When is a handaxe a planned-axe? exploring morphological variability in the Acheulean
More On Article
- SpecieScan: semi-automated taxonomic identification of bone collagen peptides from MALDI-ToF-MS
- HEAS member Gerhard Weber starts a new FWF Project to study the 3D morphology of human postcanine teeth
- Gradual exacerbation of obstetric constraints during hominoid evolution implied by re-evaluation of cephalopelvic fit in chimpanzees
- 20th anniversary of the Laboratory for scanning electron microscopy at the Vienna Institute for Archaeological Science (VIAS), University Vienna, 14.11.2024, 15:00
- Datenkontrolle, -aufbereitung und -auswertung portabler Röntgenfluoreszenzanalysen (p-RFA) mit dem Bruker Tracer 5i No 900F398 an silikatischem Material des Brandopferplatzes bei Farchant, Lkr. Garmisch-Partenkirchen
Clark, J., Shipton, C., Moncel, M.-H., Nigst, P.R., Foley, R.A., 2024. When is a handaxe a planned-axe? exploring morphological variability in the Acheulean. PloS one 19, e0307081.
Abstract
The handaxe is an iconic stone tool form used to define and symbolise both the Acheulean and the wider Palaeolithic. There has long been debate around the extent of its morphological variability between sites, and the role that extrinsic factors (especially raw material, blank type, and the extent of resharpening) have played in driving this variability, but there has been a lack of high-resolution examinations of these factors in the same study. In this paper, we present a 2D geometric morphometric analysis of 1097 handaxes from across Africa, the Levant, and western Europe to examine the patterning of this variability and what it can tell us about hominin behaviour. We replicate the findings of previous studies, that handaxe shape varies significantly between sites and entire continental regions, but we find no evidence for raw material, blank type, or resharpening in determining this pattern. What we do find, however, is that markers of reduction trajectory vary substantially between sites, suggesting that handaxes were deployed differently according to hominin need at a given site. We argue this is reflective of a continuum of reduction strategies, from those focused on the maintenance of a sharp cutting edge (i.e. direct use in cutting activities), to those focused on maintaining tip shapes, and perhaps a corresponding production of flakes. Implications for hominin behavioural flexibility are discussed.