Improved detection of methylation in ancient DNA
More On Article
- HEAS Member Publishes Article on the Gravettian Open-Air Site Ollersdorf-Heidenberg (Austria)
- A First Look at the Gravettian Open-Air Site Ollersdorf-Heidenberg (Austria): Recent Fieldwork and First Results on Stratigraphy, Chronology, Organic Preservation and Combustion Activity
- Renewed impetus for Stone Age research in the eastern Free State (South Africa) centred on Rose Cottage Cave
- First farmers of Central Europe do not show family-related inequality
- Portable X-Ray Fluorescence (p-XRF) Colloquia Series - First lecture on 12th of February
Sawyer, S., Gelabert, P., Yakir, B., Llanos-Lizcano, A., Sperduti, A., Bondioli, L., Cheronet, O., Neugebauer-Maresch, C., Teschler-Nicola, M., Novak, M., Pap, I., Szikossy, I., Hajdu, T., Moiseyev, V., Gromov, A., Zariņa, G., Meshorer, E., Carmel, L., Pinhasi, R., 2024. Improved detection of methylation in ancient DNA. Genome Biology 25, 261.
Abstract
Reconstructing premortem DNA methylation levels in ancient DNA has led to breakthrough studies such as the prediction of anatomical features of the Denisovan. These studies rely on computationally inferring methylation levels from damage signals in naturally deaminated cytosines, which requires expensive high-coverage genomes. Here, we test two methods for direct methylation measurement developed for modern DNA based on either bisulfite or enzymatic methylation treatments. Bisulfite treatment shows the least reduction in DNA yields as well as the least biases during methylation conversion, demonstrating that this method can be successfully applied to ancient DNA.