Identification and tentative removal of collagen glue in Palaeolithic worked bone objects: implications for ZooMS and radiocarbon dating.
More On Article
- SpecieScan: semi-automated taxonomic identification of bone collagen peptides from MALDI-ToF-MS
- HEAS member Gerhard Weber starts a new FWF Project to study the 3D morphology of human postcanine teeth
- Gradual exacerbation of obstetric constraints during hominoid evolution implied by re-evaluation of cephalopelvic fit in chimpanzees
- 20th anniversary of the Laboratory for scanning electron microscopy at the Vienna Institute for Archaeological Science (VIAS), University Vienna, 14.11.2024, 15:00
- Datenkontrolle, -aufbereitung und -auswertung portabler Röntgenfluoreszenzanalysen (p-RFA) mit dem Bruker Tracer 5i No 900F398 an silikatischem Material des Brandopferplatzes bei Farchant, Lkr. Garmisch-Partenkirchen
van der Sluis, L.G., McGrath, K., Thil, F., Cersoy, S., Pétillon, J.M., Zazzo, A., 2023. Identification and tentative removal of collagen glue in Palaeolithic worked bone objects: implications for ZooMS and radiocarbon dating. Scientific Reports 13, 22119.
Abstract
Collagen glue has been used for nearly two centuries to consolidate bone material, although its prevalence in museum collections is only now becoming visible. Identifying and removing collagen glue is crucial before the execution of any geochemical or molecular analyses. Palaeolithic bone objects from old excavations intended for radiocarbon dating were first analysed using ZooMS (Zooarchaeology by Mass Spectrometry) to identify the animal species, however peaks characteristic of both cattle and whale were discovered. Two extraction methods for ZooMS were tested to identify the authentic animal species of these objects, which revealed that these were originally whale bone objects that had been consolidated with cattle collagen glue. This is the first time animal collagen glue has been identified in archaeological remains with ZooMS, illustrating again the incredible versatility of this technique. Another technique, Fourier Transform Infrared Spectroscopy in Attenuated Total Reflectance mode (FTIR-ATR), was also tested if it could rapidly identify the presence of collagen glue in archaeological bone material, which was not the case. Two other cleaning methods were tested to remove bone glue contamination prior to radiocarbon dating, along with two modified collagen extraction methods for ZooMS. These methods were applied to bone blank samples (FmC = 0.0031 ± 0.0002, (n = 219), 47 336 ± 277 yr BP) that were experimentally consolidated with collagen glue and to the Palaeolithic bone material (ca. 15 000 and 12 000 yr BP). The experimental bone blanks produced excellent 14C ages, suggesting the cleaning methods were successful, however the 14C ages for some of the Palaeolithic material remained too young considering their contextual age, suggesting that the collagen glue contamination had most likely cross-linked to the authentic collagen molecule. More research is needed in order to gain a deeper understanding of the occurrence and elimination of cross-linked collagen-based glues in material from museum collections.