Dynamic finite-element simulations reveal early origin of complex human birth pattern
More On Article
- HEAS Seed Grants February 2025 Round
- OeAW Early Career Researchers Visit the UBB
- HEAS Member Magdalena Blanz receives an FWF Erwin Schrödinger Grant to research compound-specific stable isotope ratios
- Absolute dating of Bronze Age urn burials in the central Balkans: Cemeteries of copper-producing societies in eastern Serbia
- HEAS Member Barbara Horejs interviewed on Austrian radio on Archaeogenetics
Frémondière, P., Thollon, L., Marchal, F., Fornai, C., Webb, N.M., Haeusler, M., 2022. Dynamic finite-element simulations reveal early origin of complex human birth pattern. Communications Biology 5.
Abstract
Human infants are born neurologically immature, potentially owing to conflicting selection pressures between bipedal locomotion and encephalization as suggested by the obstetrical dilemma hypothesis. Australopithecines are ideal for investigating this trade-off, having a
bipedally adapted pelvis, yet relatively small brains. Our finite-element birth simulations indicate that rotational birth cannot be inferred from bony morphology alone. Based on a range of pelvic reconstructions and fetal head sizes, our simulations further imply that
australopithecines, like humans, gave birth to immature, secondary altricial newborns with head sizes smaller than those predicted for non-human primates of the same body size
especially when soft tissue thickness is adequately approximated. We conclude that australopithecines required cooperative breeding to care for their secondary altricial infants.
These prerequisites for advanced cognitive development therefore seem to have been cor- ollary to skeletal adaptations for bipedal locomotion that preceded the appearance of the genus Homo and the increase in encephalization.