Dynamic finite-element simulations reveal early origin of complex human birth pattern
More On Article
- The cranium from the Octagon in Ephesos
- Associations of Facial Shape With Physical Strength and 2D:4D in a Turkish Male and Female Sample
- A sedimentary ancient DNA perspective on human and carnivore persistence through the Late Pleistocene in El Mirón Cave, Spain.
- Intra-individual variability in ancient plasmodium DNA recovery highlights need for enhanced sampling
- HEAS Member Katerina Douka Awarded Consolidator ERC Grant
Frémondière, P., Thollon, L., Marchal, F., Fornai, C., Webb, N.M., Haeusler, M., 2022. Dynamic finite-element simulations reveal early origin of complex human birth pattern. Communications Biology 5.
Abstract
Human infants are born neurologically immature, potentially owing to conflicting selection pressures between bipedal locomotion and encephalization as suggested by the obstetrical dilemma hypothesis. Australopithecines are ideal for investigating this trade-off, having a
bipedally adapted pelvis, yet relatively small brains. Our finite-element birth simulations indicate that rotational birth cannot be inferred from bony morphology alone. Based on a range of pelvic reconstructions and fetal head sizes, our simulations further imply that
australopithecines, like humans, gave birth to immature, secondary altricial newborns with head sizes smaller than those predicted for non-human primates of the same body size
especially when soft tissue thickness is adequately approximated. We conclude that australopithecines required cooperative breeding to care for their secondary altricial infants.
These prerequisites for advanced cognitive development therefore seem to have been cor- ollary to skeletal adaptations for bipedal locomotion that preceded the appearance of the genus Homo and the increase in encephalization.